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Abstract

A novel immersed boundary velocity correction–lattice Boltzmann method is presented and validated in this work by its
application to simulate the two-dimensional flow over a circular cylinder. The present approach is inspired from the con-
ventional immersed boundary method (IBM). In the conventional IBM, the effect of rigid body on the surrounding flow is
modeled through a forcing term, which is in turn used to correct the surrounding velocity field. It was found that this pro-
cess is actually an iterative procedure, trying to satisfy the non-slip boundary condition at the solid wall. In this work, a
new concept of immersed boundary velocity correction approach is proposed, which directly corrects the velocity to
enforce the physical boundary condition. The main advantage of the new method is that it is simple in concept and easy
for implementation, and the convergence of numerical computation is faster and more stable than the conventional IBM.
One challenging issue of conventional IBM is that some streamlines may pass through the solid body since there is no
mechanism to enforce the non-slip condition at the boundary. As shown in the present numerical results, this unphysical
phenomenon is avoided in our new method since the non-slip condition is enforced. The present results for the steady and
unsteady flows compare very well with available data in the literature.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The ability to handle complex geometries accurately and efficiently has been the primary issue in compu-
tational fluid dynamics. Conventional approaches such as finite-difference and finite-element methods are gen-
erally used to accommodate complex geometries with tedious grid generation. In contrast, the recently
developed immersed boundary method (IBM) can handle complex geometry with the use of Cartesian mesh.
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The concept of IBM was introduced by Peskin [1] in the 1970s in order to model the blood flow in the heart.
The IBM comes from the concept that the deformation or moving of the boundary will yield a force that tends
to restore the boundary to its original shape or position. The restoring forces on the boundary are in turn dis-
tributed into the surrounding nodes and the flow field with a body force is solved over the whole fluid domain
including both the inside and outside of immersed body. This is the so-called virtual boundary force IBM.

Based on the work of Peskin [1], numerous research works have been done to modify or refine the IBM
[2–10]. Among the remarkable works, Goldstein et al. [2] proposed a model named virtual boundary method
which permits simulations with complex geometries. Lai and Peskin [3] proposed a second-order accurate
immersed boundary method with adoption of a well-chosen Dirac delta function. Linnick and Fasel [4] pro-
posed a high-order modified immersed interface method for the two-dimensional, unsteady, incompressible
Navier–Stokes equations in the stream function–vorticity formulation, which employs an explicit fourth-order
Runge–Kutta scheme for time integration and the fourth-order compact finite-difference schemes for approx-
imation of spatial derivatives. Lima E Silva et al. [5] proposed a version named physical virtual model, which is
based on the conservation laws, and simulated an internal channel flow and the flow around a circular cylin-
der. Due to the common feature of using Cartesian mesh in the lattice Boltzmann method (LBM) and IBM,
some researchers tried to combine these two methods into an efficient one. The first such attempt was made by
Feng and Michaelides [6,7]. In their work, the restoration force due to deformation is computed by the penalty
method [6] or the direct-forcing scheme [7]. The penalty method introduces a user-defined spring parameter
which may have a significant effect on the computational efficiency and accuracy. The direct-forcing method
was introduced firstly by Fadlun et al. [11] in order to overcome the drawbacks of the virtual boundary force
method. Kim et al. [8] later proposed an explicit variant of the direct-forcing method which allows maintaining
the simple matrix structure of a standard finite-difference method. The direct-forcing immersed boundary
method and its improved versions [12] are very suitable for finite difference applications to simulate flows
in complex domains. However, the direct-forcing scheme requires solving the N–S equations by the finite-dif-
ference method, which may spoil the merits of LBM.

The key issue in the virtual boundary force IBM is to compute the restoring force. One of the popular ways
to do it is from the difference between the boundary (Lagrangian point) velocity and the local fluid (Eulerian
point) velocity. The velocity difference at the same point produces a displacement. According to the Hooke’s
law, the restoration force due to the deformation is modeled by a linear spring relation, where the spring con-
stant in the calculation should make the particle surface stiff enough for the displacement to be small but not
large enough to affect the convergence of the computations.

From the process to compute the restoring force, it is obvious that IBM is an iterative procedure to satisfy
both the governing equation and the boundary condition. Suppose that at an intersection point, the boundary
velocity and the fluid velocity are the same. Then the non-slip boundary condition is satisfied, and there is no
displacement. According to the Hooke’s law, the restoring force is zero. Therefore, we can say that if the con-
verged solution is achieved, the local restoring force should be zero in theory. On the other hand, we notice
that in the iterative process of gradually decreasing the restoring force, the non-slip condition is not directly
enforced. Instead, it is a part of the solution. Due to numerical errors, at the converged state, the non-slip
condition is only approximately satisfied. As a result, some streamlines may pass through the solid body. This
is not true in physics. To remove this drawback, Kim et al. [8] introduced the mass source or sink into the
computation. Using this way, the non-slip condition can be well kept, but the complexity is introduced into
the computation.

Having understood that IBM is an iterative process to satisfy the boundary condition, in this work, we
present a new approach to directly enforce the non-slip boundary condition. Our approach is very simple
and straightforward. In our approach, in the vicinity of the boundary point, the velocity correction is made
to enforce the boundary condition directly, and the basic velocity field is obtained by LBM on the Cartesian
mesh. For simplicity, we term the new approach as immersed boundary velocity correction method (IBVCM),
in which, the ad hoc coefficient and the force calculation are not required. To validate the proposed method,
numerical simulation of two-dimensional flows past a circular cylinder is performed. Both steady and
unsteady cases are considered. The obtained numerical results agree very well with available data in the liter-
ature. Since the non-slip boundary condition can be accurately satisfied, the obtained streamlines do not pass
through the solid body.
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2. Immersed boundary velocity correction–lattice Boltzmann method

The immersed boundary velocity correction method is developed from the conventional immersed bound-
ary method (IBM). In the following, we will briefly describe the conventional IBM first, and then introduce the
immersed boundary velocity correction method, which directly enforces the non-slip boundary condition.

2.1. Conventional immersed boundary method (IBM)

In the conventional IBM, the solid body is immersed in the flow field. The effect of body on the flow field is
through the body force distributed from the restoring force on the solid boundary. For a two-dimensional
problem, the governing equation for the fluid motion can be written as
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Here u, v are the velocity components in the x and y directions, p is the pressure, q is the density and m is the
viscosity. fx and fy are, respectively, the components of body force f in the x and y directions. The body force f

is distributed from the restoring force F at the boundary, which is usually given by the following form:
f ðx; tÞ ¼
I

Fðs; tÞdðx� Xðs; tÞÞds ð4Þ
where X(s, t), 0 6 s 6 Lb represents the boundary coordinate, x is the coordinate of Eulerian point, d is the
delta function [3]. Using Hooke’s law, the restoring force at a boundary point can be determined by
Fðs; tÞ ¼ �kDn ¼ �kðV fluidDt � VwallDtÞ ð5Þ

where Vfluid is the fluid velocity at the boundary point interpolated from the surrounding fluid points, Vwall is
the boundary velocity of the body, k is the spring coefficient.

2.2. Immersed boundary velocity correction method (IBVCM)

Using the fractional step technique, the solution of Eqs. (1)–(3) can be obtained by the following two steps:

Step 1 (prediction step): Solve the normal Navier–Stokes equations (setting fx = 0, fy = 0 in Eqs. (1)–(3))
and obtain the predicted velocity components u* and v*.
Step 2 (correction step): Correct the velocity field by solving
ou
ot
¼ fx ð6Þ

ov
ot
¼ fy ð7Þ
There are many numerical schemes to solve Eqs. (6) and (7). When the Euler explicit scheme is applied, we
have
unþ1 ¼ u� þ Dt � fx ð8Þ
vnþ1 ¼ v� þ Dt � fy ð9Þ
where Dt is the time step size, u* and v* are the solution of step 1 obtained from un and vn at the previous
time level. Note that in the above process, un, vn, un+1, vn+1 satisfy Eqs. (1)–(3) but u* and v* only satisfy
Navier–Stokes equations with zero body force.
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In the conventional IBM, fx and fy are computed from Eqs. (4) and (5). When the corrected velocity field is
obtained from Eqs. (8) and (9), there is no guarantee that the velocity Vfluid interpolated from the corrected
velocity field satisfies the non-slip boundary condition, that is, Vfluid = Vwall. This is because the restoring force
and the resultant body force fx and fy are all pre-determined. To overcome this drawback, the immersed
boundary velocity correction method (IBVCM) is introduced. The basic idea of IBVCM is that the body
forces fx and fy are not pre-determined. Instead, fx and fy should satisfy a constraint. That is, the velocity Vfluid

interpolated from the corrected velocity field given by Eqs. (8) and (9) satisfies the non-slip boundary condi-
tion, Vfluid = Vwall. For simplicity, we can define the velocity correction u 0 and v 0 as
u0 ¼ Dt � fx ð10Þ
v0 ¼ Dt � fy ð11Þ
As a result, Eqs. (8) and (9) can be written as
unþ1 ¼ u� þ u0 ð12Þ
vnþ1 ¼ v� þ v0 ð13Þ
Now, the problem is simplified to determine the velocity correction u 0 and v 0 so that the condition Vfluid = Vwall

can be satisfied. Obviously, in the above process, the computation of restoring force and the resultant body
force is avoided.

In general, the computation of Vfluid from the corrected velocity field involves the two-dimensional inter-
polation, which may be complicated. On the other hand, it can be observed from Eqs. (8) and (9) that the
x-component of the body force fx only corrects the x-component velocity u while the y-component of the body
force fy only corrects the y-component velocity v. This information is very important. As shown in Fig. 1, the
Cartesian mesh has two intersection points Mx and My with the immersed boundary. As the numerical com-
putation only involves the functional value at the mesh point, the intersection point Mx only affects the u-
velocity correction along the horizontal mesh line while the intersection point My only affects the v-velocity
correction along the vertical mesh line. Like the conventional IBM, we limit the effect of the intersection point
to a local region in the flow domain. As shown in Fig. 1, it is supposed that the intersection point Mx only
affects the u-velocity correction at two mesh points A and B, and the intersection point My only affects the
v-velocity correction at two mesh points B and C. Here, A and C are in the flow domain while B is inside
the body. Clearly, at point B, both the u-velocity correction and v-velocity correction are needed, while at
point A, only the u-velocity correction is needed. Similarly, at point C, only the v-velocity correction is needed.
As shown below, the velocity correction can be determined easily.

The velocity components at points A, B and C can be denoted, respectively, as (uA,vA), (uB,vB) and (uC,vC).
The interpolated velocity from the flow domain is denoted as (uix,vix) for the intersection point Mx (by
A

C

BMx

Boundary of A Body

Cartesian Mesh

My

Fig. 1. Cartesian mesh lines, immersed boundary and their intersection points.
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interpolation in the x direction) and (uiy,viy) for the intersection point My (by interpolation in the y direction).
The wall velocity is represented by (uMx,vMx) for the intersection point Mx and (uMy,vMy) for the intersection
point My. The distance between points A and B (mesh spacing in the x direction) is denoted as AB ¼ Dx, and
the distance between points A and Mx is AMx ¼ D1.

As shown in Fig. 2, the u-velocity between points A and B has a linear relationship. Thus, it is easy to get
the interpolated velocity at the intersection point Mx as
uix ¼ uA þ
D1

Dx
ðuB � uAÞ ð14Þ
Note that the computation of v-velocity at Mx is not necessary as there is no need to correct the v-velocity at
points A and B. The interpolated velocity uix given by Eq. (14) may not be the same as the given boundary
condition uMx. So, we have to correct uix to uMx. As shown in Fig. 2, this can be easily done by moving
the x axis to the new position x 0. As a consequence, all the u-velocity between A and B would be corrected
by uMx � uix. In other words, the velocity correction between the points A and B is
u0 ¼ uMx � uix ¼ uMx � uA �
D1

Dx
ðuB � uAÞ ð15Þ
Obviously, when the u-velocity at the points A and B is corrected by Eq. (15), the interpolated velocity at the
intersection point Mx satisfies the boundary condition u = uMx.

In a similar manner, only the v-velocity correction is needed between the points B and C, which can be writ-
ten as
v0 ¼ vMy � vB �
D2

Dy
ðvC � vBÞ ð16Þ
where vMy is the v-velocity component of the wall velocity at the intersection point My, Dy is the distance be-
tween the points B and C, Dy ¼ BC (mesh spacing in the y direction), and D2 is the distance between the points
B and My, D2 ¼ BMy .

With Eqs. (15) and (16), the computation of IBVCM is very simple. The basic time marching procedure can
be summarized below:

(1) Solve Navier–Stokes equations with zero body force to get the intermediate velocity field u* and v*.
u

uA

u
B

uix uMx

x

x'

Δ 1 Δ x

Boundary point

uix - uMx

Α

Β

Μx

Fig. 2. Linear velocity distribution between two mesh points.
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(2) Apply Eqs. (15) and (16) to correct the velocity at those mesh points next to the boundary positions
which are the intersection points between the Cartesian mesh lines and the immersed boundary.

(3) Repeat steps (1) and (2) until the convergence threshold is satisfied.

Fig. 1 shows the normal situation of intersection points between the Cartesian mesh lines and the immersed
boundary, in which the u-velocity at B is corrected by the information at the intersection point Mx and the
v-velocity at B is corrected by the information at the intersection point My. Some special cases of intersection
points will be discussed in the following sub-section.

2.3. Some special cases for velocity correction

It is noticed that for some cases, the immersed boundary may have more than one intersection points with
the Cartesian mesh lines within a mesh spacing. An example is shown in Fig. 3, where the immersed boundary
has three intersection points with the horizontal mesh lines within the mesh spacing, Dx. For this case, more
velocity correction is needed to ensure the non-slip boundary condition being satisfied. Fig. 3 shows that the
immersed boundary has one intersection point My with the vertical mesh line, and four intersection points M1,
M2, M3, M4 with the horizontal mesh lines. Among them, the points M2, M3 and M4 are within the mesh spac-
ing Dx. The points B and E are inside the solid body. As the distances between the point B and the intersection
points My and M2 are within the mesh spacing Dx and Dy, the velocity correction at B can be done using the
same way as described in the above section. That is, the u-velocity correction between A and B is made by Eq.
(15), while the v-velocity correction between B and C is made by Eq. (16). As for the point E, its distance to the
intersection point M3 on the horizontal mesh line is less than the mesh spacing Dx. So, the u-velocity correc-
tion between the points D and E can be made by using a similar equation to Eq. (15), which will be shown
below. However, the distance from E to the intersection point My on the vertical mesh line is larger than
the mesh spacing Dy. This may result in a larger interpolation error, and lead to inconsistent v-velocity cor-
rection at the point C as its correction value can be obtained in the interval between B and C and can also be
computed in the interval between E and C. On the other hand, it was found from the numerical experiment
that the v-velocity correction at E is necessary. Otherwise, it may lead some streamlines to pass through the
solid body because the non-slip boundary condition is not accurately satisfied. To enforce the non-slip
Μ 1

Μ y

Μ4

Μ2

Μ3D

Α

E

C

Β

Boundary of A Body

Cartesian Mesh

Fig. 3. A special case with more than one intersection points within Dx.
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boundary condition at wall, and in the meantime, to keep consistent velocity correction at the mesh points,
both the u-velocity correction and v-velocity correction are made between D and E using the following
equations:
u0 ¼ uM3
� uD �

D1

Dx
ðuE � uDÞ ð17Þ

v0 ¼ vM3
� vD �

D1

Dx
ðvE � vDÞ ð18Þ
where ðuM3
; vM3
Þ is the wall velocity at the intersection point M3, (uD,vD) and (uE,vE) are, respectively, the

intermediate velocity at points D and E, D1 is the distance between D and M3.
In practice, we may encounter another case. That is, the immersed boundary may have more than one inter-

section points with vertical mesh lines within the mesh spacing Dy. This can be seen clearly in Fig. 4, where the
intersection points M2, M3 and M4 are within Dy, and the points B and D are inside the solid body. The veloc-
ity correction for the point B can be done normally by using Eqs. (15) and (16). The u-velocity correction and
v-velocity correction between D and E can be made by the following equations:
u0 ¼ uM3
� uD �

D1

Dy
ðuE � uDÞ ð19Þ

v0 ¼ vM3
� vD �

D1

Dy
ðvE � vDÞ ð20Þ
where ðuM3
; vM3
Þ, (uD,vD) and (uE,vE) and D1 have the same meaning as the previous case.

2.4. Implementation by lattice Boltzmann method

In the IBVCM, the intermediate velocity components u* and v* in Eqs. (12) and (13) are the solution of
incompressible Navier–Stokes (N–S) equations with zero value of body force. When the primitive variable
form of N–S equations is used, the solution of Poisson equation is needed. Usually, the convergence rate
for the solution of Poisson equation is not very fast. Sometimes, it is even difficult to get converged solution.
Recently, the lattice Boltzmann method (LBM) [13–22] was developed into an alternative promising approach
for simulation of incompressible viscous flows. The major advantage of LBM is its simplicity and easy imple-
mentation. In this work, LBM is used as a tool to give the predicted (intermediate) velocity components u* and
v* on the Cartesian mesh. The lattice Boltzmann equation can be written as
Μ1

Μ3

Μ2Μx Μ4A

B

C

D

E

Cartesian Mesh

Boundary of A Body

Fig. 4. A special case with more than one intersection points within Dy.
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faðxþ eadt; t þ dtÞ � faðx; tÞ ¼ �
1

s
faðx; tÞ � f eq

a ðx; tÞ
� �

ð21Þ
where s is the single relaxation time; fa is the distribution function; f eq
a is its corresponding equilibrium state; dt

is the time step; ea is the particle velocity. In the LBM computation, the D2Q9 lattice velocity model is used,
which is defined as
ea ¼
0 a ¼ 0

ðcos½ða� 1Þp=2�; sin½ða� 1Þp=2�Þ a ¼ 1; 2; 3; 4ffiffiffi
2
p
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Accordingly, the equilibrium distribution function is given by
f eq
a ¼ waq 1þ 3ea � V þ

9ðea � VÞ2

2
� 3V2

2

" #
ð23Þ
where w0 = 4/9, wa = 1/9 for a = 1,2,3,4, wa = 1/36 for a = 5,6,7,8. Note that f eq
a depends on the macro-

scopic density and velocity. The corrected velocity field in the previous time level should be used in f eq
a .

Clearly, the effect of corrected velocity field on the distribution function fa is through f eq
a .

From conservation laws of mass and momentum, the macroscopic density q and fluid velocity V are cal-
culated in terms of the density distribution functions as
q ¼
X8

a¼0

fa; V ¼ 1

q

X8

a¼0

faea ð24Þ
The pressure p can be calculated from the equation of state, and for the D2Q9 model, it is given by
p ¼ q
3

ð25Þ
As shown above, the distribution function fa is affected by the corrected velocity field through f eq
a . As a result,

according to Eqs. (24) and (25), the obtained pressure is also affected by the corrected velocity field.
The kinematic viscosity t can be linked to the relaxation time s in Eq. (21) through the Chapman–Enskog

expansion in such a way that the macroscopic variables obtained by LBM satisfy the N–S equations. For the
D2Q9 model, the relationship between t and s is given by
t ¼ 1

3
s� 1

2

� �
dt ð26Þ
It should be indicated that the LBM is used in IBVCM as a tool only to provide the predicted velocity field.
Since no body force is involved in this step, the use of LBM is exactly the same as its application for normal
flow problems. In other words, we do not need to modify the lattice Boltzmann equation. This is different from
the combination of conventional IBM with LBM, which does need to modify the lattice Boltzmann equation
in order to consider the effect of the body force. In this sense, we can say that the implementation of IBVCM is
simpler than the conventional IBM.

3. Results and discussions

In order to examine the accuracy and efficiency of the proposed immersed boundary velocity correction
method (IBVCM), numerical simulations of the viscous flow past a circular cylinder are carried out. Both
the steady and unsteady cases are considered. This problem has been studied extensively and a number of
numerical and experimental results exist in literature [9,23–33]. The problem is very attractive because the flow
behavior depends on the Reynolds number, Re = u1D/t, and is not easy to simulate accurately using Carte-
sian grids. Here, u1 is the free stream velocity, m is the kinematic viscosity of fluid. To well capture the high
velocity gradients around the cylinder surface, the non-uniform mesh is used, and the Taylor series expansion
and least square-based lattice Boltzmann method (TLLBM) [13] is applied to obtain the predicted velocity
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field. The computational domain is set by L · W = 42D · 42D (square domain). The circular cylinder is
located at the center of computational domain. The free steam velocity u1 is set to be 0.1, and the free stream
density q1 is taken as 1. For all the simulations, the whole mesh size is 561 · 561, and in the region including
the immersed body, �0.52 6 x 6 0.52, �0.52 6 y 6 0.52, a uniform fine mesh of 361 · 361 with the minimum
mesh spacing of 0.00289 is used. In other regions, the mesh spacing gradually increases towards the outer
boundary. For this problem, the drag and lift coefficients are good parameters to validate the accuracy of
numerical results obtained by various numerical methods. In this study, the drag force FD and lift force FL

on the immersed body are calculated by using the control volume method. Integration of momentum equa-
tions over a rectangular control volume X gives
F D ¼ �
d

dt
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u1 dX
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where S is the control surface,~n is the normal vector to the boundary of control surface,~n ¼ ðn1; n2Þ, the sub-
scripts 1 and 2 denote the x-direction and y-direction, respectively. Note that the use of Eqs. (27) and (28) is
exactly the same as their applications in conventional fluid mechanics. That is, the volume X is the flow do-
main, which does not include the interior of the cylinder, and the surface S represents the outer surface of the
control volume, which does not include the cylinder surface. The effect of the cylinder surface is reflected by
the forces FD and FL. The drag and lift coefficients are defined by
CD ¼
F D

0:5qu2
1D

; CL ¼
F L

0:5qu2
1D

ð29Þ
The pressure coefficient on the cylinder surface is defined as:
Cp ¼ pw � p1
0:5qu2

1
ð30Þ
Here, pw is the pressure on the boundary and p1 is the free stream pressure. Like the conventional IBM, the
obtained pressure profile on the cylinder surface shows some oscillation. To remove this difficulty, we adopted
the way suggested by Kim et al. [8] to compute the wall pressure. That is, the pressure is computed on a closed
surface which is 3/4 mesh spacing away from the cylinder surface.

In the TLLBM computation to obtain the predicted velocity field, only the far field boundary is involved.
In this work, the equilibrium density distribution function with the given free stream velocity and density is
used to implement the boundary condition at the far field boundary. For the unsteady flow simulation where
the Karman vortex street occurs, the velocity and density at the far field boundary of downstream can be
determined by extrapolation from the flow field. At the cylinder surface, the non-slip (zero velocity) boundary
condition is imposed, which is used in IBVCM to correct the velocity field at the mesh points near the cylinder
boundary (see Eqs. (15) and (16)).

In the conventional IBM, the boundary effect is through the interpolation between the boundary (Lagrang-
ian) points and the mesh (Eulerian) points, while in the IBVCM, the boundary effect is through the intersec-
tion points Mx and My at the boundary which are determined by the mesh lines and the boundary curve. Note
that in the IBM, the boundary points and the mesh points are independent. In IBVCM, Mx and My do not
depend on the distribution of boundary points. They are dependent of the local mesh lines and the boundary
curve. For the general case, the boundary curve may not be expressed by a simple function. Instead, for the
two-dimensional case, it can be represented by a series of line segments. For this case, Mx and My can be deter-
mined by intersection points of mesh lines with all line segments. In this work, the boundary curve (cylinder
surface) is represented by 800 line segments (800 boundary points) for both IBM and IBVCM computations.

3.1. Steady flow past a circular cylinder

For the numerical simulation, the initial fluid density is set as q = 1.0 and the initial velocity is taken as the
free stream velocity u1. Extensive simulations were performed for the steady case.
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It was found that as compared to the conventional IBM, the present method has a faster convergence rate
to reach the steady state solution. This can be clearly observed in Figs. 5 and 6. From numerical experiments,
it was found that the spring coefficient in IBM has very little effect on the convergence rate. In this study, its
value of 32 is used for all the numerical examples. Fig. 5 shows the time evolution of drag coefficients at
Re = 40, while Fig. 6 displays the early stage of convergence history at the same Reynolds number of 40. Obvi-
ously, the present results and the conventional IBM results will eventually converge to the same value, but the
present method has a faster convergence rate. As shown in Fig. 6, at the non-dimensional time T = 1, the drag
coefficient obtained by the present method converges to the steady state resolution. However, at this time, the
drag coefficient obtained by the conventional IBM still shows the fluctuation feature. It approaches the steady
state solution at T = 3. The faster convergence of the present method may be due to the fact that the non-slip
boundary condition is accurately satisfied in IBVCM. In the conventional IBM, the non-slip boundary con-
dition is not enforced. One just expects that when the converged solution is obtained, the non-slip condition
can be approximately satisfied. It may take more iteration steps for satisfying the non-slip condition. It should
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be indicated that the fast convergence feature of a numerical method is very important for the simulation of
unsteady flows when the explicit time marching technique is adopted.

Apart from the faster convergence feature, the CPU time required by the IBVCM at each time step is
slightly less than that required by the conventional IBM. This is because IBVCM does not involve d-function
interpolation from the Eulerian points to Lagrangian points or from Lagrangian points to Eulerian points.
However, since most of the CPU time is taken by LBM computation which is the same for two methods,
the reduction of CPU time is very little. For example, for the case of Re = 20, at each time step, the CPU time
needed by IBVCM and conventional IBM is, respectively, 2.74 and 2.79 s.

The accuracy of IBVCM results is also very good. Fig. 7 shows the distribution of drag coefficient versus
the Reynolds number in logarithmic scale. Obviously, the present results compare very well with the experi-
mental data [28] and other numerical results [5,32]. Table 1 compares the non-dimensional length of recircu-
lating eddy obtained by the present method and other research work at Re = 20 and 40. Here, the
non-dimensional length of recirculating eddy is defined as 2L/D, and the length of the recirculating region,
L, is measured from the rearmost point of the cylinder to the end of the wake. From Table 1, we can see that
our numerical results of the recirculating length are in good agreement with previous ones [19,23–26,29]. The
streamlines of steady state resolution obtained by the present method at Re = 20 and 40 are depicted in Fig. 8.
Clearly, a pair of symmetric eddy is developed behind the cylinder. As shown in Fig. 8, unlike the conventional
IBM results, the present results do not reveal any streamline to pass through the cylinder. This demonstrates
the high accuracy of present method in satisfying the non-slip boundary condition. Indeed, when the con-
verged solution is obtained, the velocity on the cylinder surface is zero or very close to zero. This can be con-
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Fig. 7. Comparison of drag coefficients.

Table 1
Comparison of recirculating length (2L/D) with previous studies

Authors Re = 20 Re = 40

He and Doolen [19] 1.842 4.49
Nieuwstadt and Keller [23] 1.786 4.357
Coutanceau and Bouard [24] 1.86 4.26
Dennis and Chang [25] 1.88 4.69
Fornberg [26] 1.82 4.48
Tseng and Ferziger [29] – 4.42
Present 1.80 4.40



Re = 20
firmed in Fig. 9, which shows the contour of j~uj ¼ 0 (magnitude of velocity) at Re = 40 in the whole compu-
tational domain. Although the cylinder surface is not given, it is well revealed by the contour of j~uj ¼ 0 in
Fig. 9.

The pressure profile for Re = 40 is shown in Fig. 10. Also included in Fig. 10 are the numerical and exper-
imental results of He and Doolen [19] and Park et al. [34]. The horizontal axis h is the orientation angle, which
is changed along the boundary from 0 (leading stagnation point) to 180 (trailing stagnation point). It can be
seen from Fig. 10 that the present results basically agree well with those in the literature.
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Fig. 10. The pressure profile at Re = 40.

Table 2
Comparison of average drag coefficient and lift coefficient for Re = 100

CD (average) CL

Lai and Peskin [3] 1.4473 ±0.3299
Kim et al. [8] 1.33 ±0.32
Tseng and Ferziger [29] 1.42 ±0.29
Liu et al. [35] 1.35 ±0.339
Present 1.3833 ±0.35
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3.2. Unsteady flow past a circular cylinder

To further validate the IBVCM, the unsteady flow around the cylinder at moderate Reynolds numbers was
simulated. In this case, the initial perturbation in the flow field would trigger the alternating separation of the
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Fig. 11. Distribution of Strouhal number versus Reynolds number (logarithmic scale is used in the horizontal axis).
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vortices which form the well-known Karman vortex street. Eventually, the flow becomes periodically
unsteady. It was found that the present method can well predict the vortex street behind the cylinder. The log-
arithm of average drag coefficient versus the logarithm of Reynolds number is shown in Fig. 7. It can be seen
from this figure that the present results agree very well with the experimental data of Tritton [28] and the
numerical results of Lima E Silva et al. [5] and Zdravkovich [32]. Table 2 compares the averaged value of drag
and lift coefficients at Re = 100 between our results and those from other researchers [3,8,29,35]. Good agree-
ment is shown in this table. The Strouhal number, which is defined as
St ¼ fD=u1 ð31Þ
structures of instantaneous streamlines atRe

= 150.

and drag coe�cients at Re = 807
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is a good parameter to measure the oscillation of fluid flow in the wake region. Here f is the shedding fre-
quency of vortex. The Strouhal number computed by the present method is displayed in Fig. 11. Also included
in this figure are the results of Williamson [30,31] and Norberg [27]. Clearly, the present results have a very
good agreement with the published data. Note that the logarithmic scale is used in the horizontal-axis (Rey-
nolds number) of Fig. 11, following the work of Norberg [27]. Figs. 12 and 13 show the instantaneous stream-
lines of Karman vortex street at Re = 100 and 150. It can be seen clearly from these figures that even for an
unsteady flow, the present results do not show any streamline passing through the cylinder. This further dem-
onstrates the high accuracy of the present method in implementing the non-slip boundary condition.

Figs. 14 and 15 present the time evolution of drag and lift coefficients at Re = 80 and 100. The periodicity of
flow pattern is clearly revealed. It can be seen from these figures that the period of drag coefficient is different
from that of lift coefficient. The period of lift coefficient is about two times the period of drag coefficient. The
amplitude of lift coefficient increases notably as the Reynolds number increases. In contrast, the amplitude of
drag coefficient has a little variation.
4. Conclusions

A new immersed boundary velocity correction method (IBVCM) is developed in this paper. IBVCM adopts
the idea of the conventional immersed boundary method (IBM). That is, the effect of the immersed boundary
on the flow field is through the body force in the momentum equations. From the concept of the fractional
step technique, adding a body force in the momentum equations is equivalent to make a correction in the
velocity field. In the IBVCM, there is no calculation of the restoring force, and the velocity correction is made
in such a way that the velocity at the boundary interpolated from the corrected velocity field satisfies the non-
slip boundary condition. In the present computation, the predicted velocity field is obtained by using the lat-
tice Boltzmann method (LBM).

The accuracy and efficiency of the proposed method are examined by its application to simulate two-
dimensional steady and unsteady flows past a circular cylinder. Numerical results showed that the present
method has a faster convergence rate than the conventional IBM. The obtained results are in good agree-
ment with available data in the literature. In particular, the streamlines obtained by IBVCM do not pene-
trate the solid body. It seems that the present method has a great potential in simulation of steady and
unsteady flows.
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